Dividing the workload at a eukaryotic replication fork.
نویسندگان
چکیده
Efficient and accurate replication of the eukaryotic nuclear genome requires DNA polymerases (Pols) alpha, delta and epsilon. In all current replication fork models, polymerase alpha initiates replication. However, several models have been proposed for the roles of Pol delta and Pol epsilon in subsequent chain elongation and the division of labor between these two polymerases is still unclear. Here, we revisit this issue, considering recent studies with diagnostic mutator polymerases that support a model wherein Pol epsilon is primarily responsible for copying the leading-strand template and Pol delta is primarily responsible for copying the lagging-strand template. We also review earlier studies in light of this model and then consider prospects for future investigations of possible variations on this simple division of labor.
منابع مشابه
Implications of DNA replication for eukaryotic gene expression.
DNA replication has a key role in many developmental processes. Recent progress in understanding events at the replication fork suggests mechanisms for both establishing and maintaining programs of eukaryotic gene activity. In this review, I discuss the consequences of replication fork passage for preexisting chromatin structures and describe how the mechanism of nucleosome assembly at the repl...
متن کاملThe DNA replication fork in eukaryotic cells.
Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two differe...
متن کاملLow rate of replication fork progression lengthens the replication timing of a locus containing an early firing origin
Invariance of temporal order of genome replication in eukaryotic cells and its correlation with gene activity has been well-documented. However, recent data suggest a relax control of replication timing. To evaluate replication schedule accuracy, we detailed the replicational organization of the developmentally regulated php locus that we previously found to be lately replicated, even though ph...
متن کاملPrimPol Bypasses UV Photoproducts during Eukaryotic Chromosomal DNA Replication
DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromoso...
متن کاملThe Werner syndrome protein: linking the replication checkpoint response to genome stability
The Werner syndrome protein (WRN) is a member of the human RecQ family DNA helicases implicated in the maintenance of genome stability. Loss of WRN gives rise to the Werner syndrome, a genetic disease characterised by premature aging and cancer predisposition. WRN plays a crucial role in the response to replication stress and significantly contributes to the recovery of stalled replication fork...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in cell biology
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2008